

Roberto E. Amaya, Expo Energía 2016, San Pedro Sula, Honduras, 8 Junio 2016

Motores NEMA-Premium® Ahorro de Energía con Motores

Agenda Ahorro de Energía con Motores NEMA-Premium®

- Introducción
- Tendencia de la demanda eléctrica mundial
- Consumo energético mundial de motores eléctricos
- Normas y regulaciones internacionales de eficiencia en motores
- ¿Qué es la eficiencia de un motor eléctrico y cuáles son sus pérdidas?
- ¿Cómo se construye un motor de Eficiencia NEMA Premium?
- Métodos de medición de eficiencia
- Cálculos de ahorro de energía
- Costo de operación vs costo inicial
- Recomendaciones

Motores y Generadores en ABB Introducción

- Fabricante Líder Mundial de Motores y Generadores de Baja y Media Tensión, y productos de transmisión de potencia mecánica atendiendo todas las industrias y aplicaciones, en todos los mercados
- 15 000 personas, 45 fábricas en 13 países
- Completa oferta de productos desde fracción de HP hasta 70 MW
 - Motores y generadores de inducción de baja y media tensión
 - Motores y generadores sincrónicos y de imanes permanentes
 - Motores DC, servomotores, moto-reductores
 - Productos de transmisión de potencia mecánica
- Cerca de 300.000 motores disponibles en 6 centros de stock globales

Motores y Generadores en ABB Portafolio Motores Baja Tensión

Motores baja tensión IEC

Process Performance

Hierro Fundido
Aluminio

M3BP 71-450, IE2, IE3, IE4 M3AA 71-280, IE2, IE3

General Performance

M2QA 71-355, IE1/ M2BA 71-355, IE2 M2AA 56 – 250, IE1, IE2

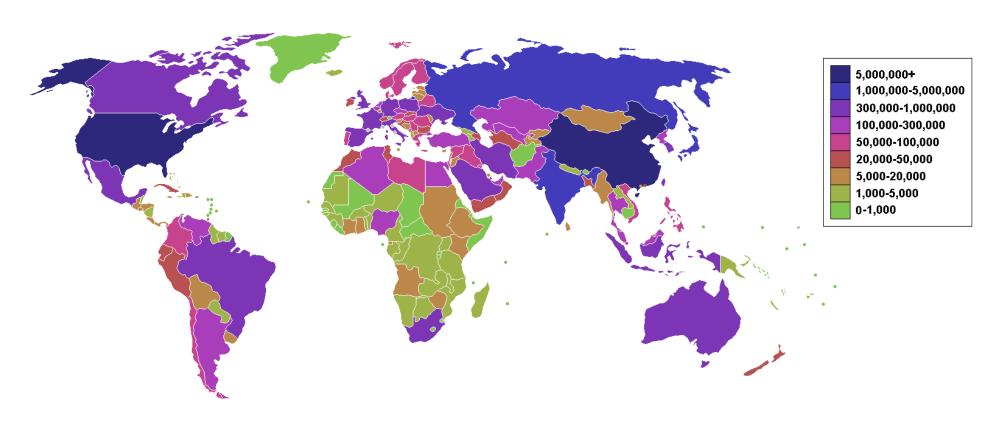
Motores baja tensión NEMA

Premium Efficient Super-E® Motors

Premium Efficiency 56 – 449T

General Purpose

High Efficiency 143T – 449T

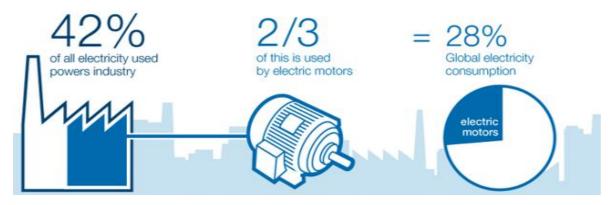

Severe Duty

Premium or High Efficiency, IEEE841 143T – 449T

Impacto del Ahorro de Energía con Motores Eléctricos Calentamiento Global y el Protocolo de Kioto

Países por emisiones de dióxido de carbono (CO2) a través de la quema de combustibles fósiles (azul el más alto).

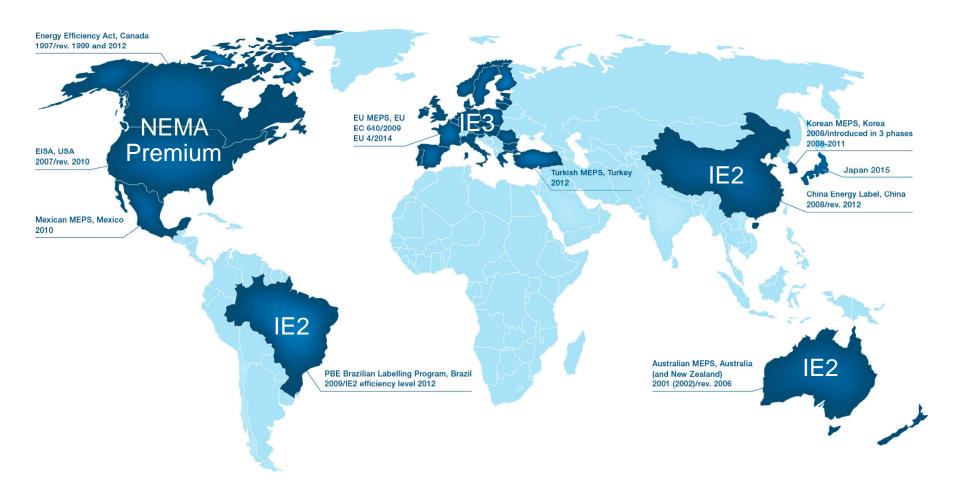
 $Fuente: https://upload.wikimedia.org/wikipedia/commons/d/d1/Countries_by_carbon_dioxide_emissions_world_map_deobfuscated.png$


Eficiencia Energética

Ahorrando energía y protegiendo el ambiente simultáneamente

El Mundo tiene una demanda de electricidad ilimitada

Gran parte de esta energía es utilizada en motores eléctricos

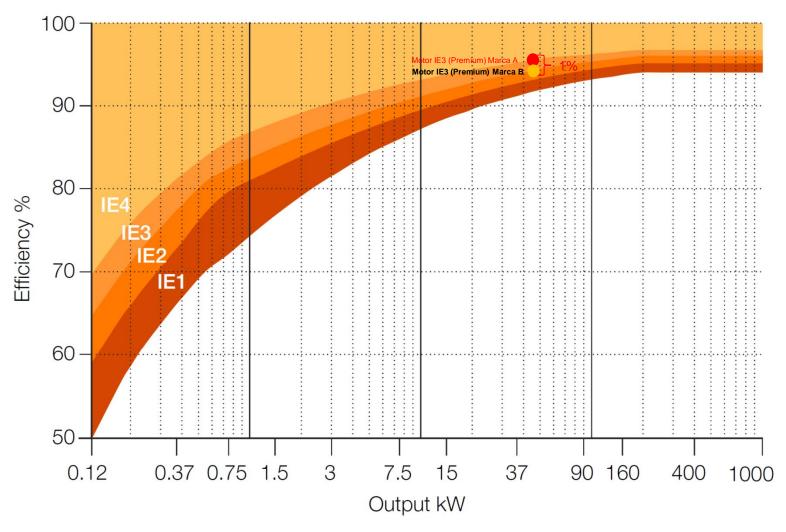

Sin embargo, utilizando tecnología disponible en la actualidad podemos hacer que millones de sistemas motrices sean más eficientes

Medidas de eficiencia energética pueden reducir el consumo hasta en un:

60%

Motores y Generadores en ABB MEPS* en el mundo @ Abril 2016

MEPS: Minimum Efficiency Performance Standard


Eficiencia Energética en Motores Normas y Clases de Eficiencia

NEMA MG-1 (parte 12) 60Hz: Tabla hasta 2500Hp, 5000V, 2, 4, 6 y 8p	IEC 60034-30-1 50 Hz: Tabla hasta 1 MW/ 1000 V/ 2, 4, 6 y 8p
-	IE4 - Super Premium Efficiency
Premium Efficiency	IE3 - Premium Efficiency
High Efficiency	IE2 - High Efficiency
-	IE1 - Standard Efficiency

Eficiencia Energética en Motores Ahorrando energía y protegiendo el ambiente simultáneamente

Clases de eficiencia - Motores de 4 polos

Eficiencia Energética en Motores Marcado en placas y documentación Motor ABB IEC - EU

- Rendimiento nominal menor de la gama al 100%, 75% and 50% de la carga
- Nivel de rendimiento (IE2 or IE3)
- Año de fabricación

Además, debe estar disponible dicha información en la documentación técnica del motor y en las páginas web del fabricante abiertas al público.

ABB determina los valores de rendimiento según la norma IEC/EN 60034-2-1, usando el método de mayor precisión (método indirecto, con pérdidas adicionales determinadas mediante medición).

Norma EPAct-92 de USA (A partir del 24-10-1997) Motores de Alta Eficiencia (IE2)

		NOMI	NAL FULL-I	LOAD EFFIC	OAD EFFICIENCY			
MOTOR	0	PEN MOTO	RS	ENCLOSED MOTORS				
HORSEPOWER	6 POLE	4 POLE	2 POLE	6 POLE	4 POLE	2 POLE		
1	80.0	82.5		80.0	82.5	75.5		
1.5	84.0	84.0	82.5	85.5	84.0	82.5		
2	85.5	84.0	84.0	86.5	84.0	84.0		
3	86.5	86.5	84.0	87.5	87.5	85.5		
5	87.5	87.5	85.5	87.5	87.5	87.5		
7.5	88.5	88.5	87.5	89.5	89.5	88.5		
10	90.2	89.5	88.5	89.5	89.5	89.5		
15	90.2	91.0	89.5	90.2	91.0	90.2		
20	91.0	91.0	90.2	90.2	91.0	90.2		
25	91.7	91.7	91.0	91.7	92.4	91.0		
30	92.4	92.4	91.0	91.7	92.4	91.0		
40	93.0	93.0	91.7	93.0	93.0	91.7		
50	93.0	93.0	92.4	93.0	93.0	92.4		
60	93.6	93.6	93.0	93.6	93.6	93.0		
75	93.6	94.1	93.0	93.6	94.1	93.0		
100	94.1	94.1	93.0	94.1	94.5	93.6		
125	94.1	94.5	93.6	94.1	94.5	94.5		
150	94.5	95.0	93.6	95.0	95.0	94.5		
200	94.5	95.0	94.5	95.0	95.0	95.0		

The Energy Policy Act

The law's requirements for 1 to 200 horsepower AC motors effective October 24, 1997

- Prohibida su venta dentro de USA
- Disponibles solo para venta fuera de USA

NEMA MG1-2014 Table 12-12 FULL-LOAD EFFICIENCIES FOR 60 HZ PREMIUM EFFICIENCY MEDIUM ELECTRIC MOTORS RATED 600 VOLTS OR LESS (RANDOM WOUND)

Open Motors

15	_ <u>2 Pole</u>		4 Pole		<u>6 P</u>	ole	8 Pole	
HP	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency
1	77.0	74.0	85.5	82.5	82.5	80.0	75.5	72.0
1.5	84.0	81.5	86.5	84.0	86.5	84.0	77.0	74.0
2	85.5	82.5	86.5	84.0	87.5	85.5	86.5	84.0
3	85.5	82.5	89.5	87.5	88.5	86.5	87.5	85.5
5	86.5	84.0	89.5	87.5	89.5	87.5	88.5	86.5
7.5	88.5	86.5	91.0	89.5	90.2	88.5	89.5	87.5
10	89.5	87.5	91.7	90.2	91.7	90.2	90.2	88.5
15	90.2	88.5	93.0	91.7	91.7	90.2	90.2	88.5
20	91.0	89.5	93.0	91.7	92.4	91.0	91.0	89.5
25	91.7	90.2	93.6	92.4	93.0	91.7	91.0	89.5
30	91.7	90.2	94.1	93.0	93.6	92.4	91.7	90.2
40	92.4	91.0	94.1	93.0	94.1	93.0	91.7	90.2
50	93.0	91.7	94.5	93.6	94.1	93.0	92.4	91.0
60	93.6	92.4	95.0	94.1	94.5	93.6	93.0	91.7
75	93.6	92.4	95.0	94.1	94.5	93.6	94.1	93.0
100	93.6	92.4	95.4	94.5	95.0	94.1	94.1	93.0
125	94.1	93.0	95.4	94.5	95.0	94.1	94.1	93.0
150	94.1	93.0	95.8	95.0	95.4	94.5	94.1	93.0
200	95.0	94.1	95.8	95.0	95.4	94.5	94.1	93.0
250	95.0	94.1	95.8	95.0	95.8	95.0	95.0	94.1
300	95.4	94.5	95.8	95.0	95.8	95.0		
350	95.4	94.5	95.8	95.0	95.8	95.0		
400	95.8	95.0	95.8	95.0				
450	96.2	95.4	96.2	95.4				
500	96.2	95.4	96.2	95.4	2			

- Todos los motores
 Baldor cumplen con la norma NEMA-Premium
- Obligatorio para venta dentro de USA
- Mayor economía de Energía en aplicaciones de uso continuo

Fuente: NEMA MG1-2014

NEMA MG1-2014 Table 12-12 (Continued) FULL-LOAD EFFICIENCIES FOR 60 HZ PREMIUM EFFICIENCY MEDIUM ELECTRIC MOTORS RATED 600 VOLTS OR LESS (RANDOM WOUND)

Enclosed Motors

70	_ 2 Pole		<u>4 P</u>	4 Pole		ole	<u>8 P</u>	ole
<u>HP</u>	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency
1	77.0	74.0	85.5	82.5	82.5	80.0	75.5	72.0
1.5	84.0	81.5	86.5	84.0	87.5	85.5	78.5	75.5
2	85.5	82.5	86.5	84.0	88.5	86.5	84.0	81.5
3	86.5	84.0	89.5	87.5	89.5	87.5	85.5	82.5
5	88.5	86.5	89.5	87.5	89.5	87.5	86.5	84.0
7.5	89.5	87.5	91.7	90.2	91.0	89.5	86.5	84.0
10	90.2	88.5	91.7	90.2	91.0	89.5	89.5	87.5
15	91.0	89.5	92.4	91.0	91.7	90.2	89.5	87.5
20	91.0	89.5	93.0	91.7	91.7	90.2	90.2	88.5
25	91.7	90.2	93.6	92.4	93.0	91.7	90.2	88.5
30	91.7	90.2	93.6	92.4	93.0	91.7	91.7	90.2
40	92.4	91.0	94.1	93.0	94.1	93.0	91.7	90.2
50	93.0	91.7	94.5	93.6	94.1	93.0	92.4	91.0
60	93.6	92.4	95.0	94.1	94.5	93.6	92.4	91.0
75	93.6	92.4	95.4	94.5	94.5	93.6	93.6	92.4
100	94.1	93.0	95.4	94.5	95.0	94.1	93.6	92.4
125	95.0	94.1	95.4	94.5	95.0	94.1	94.1	93.0
150	95.0	94.1	95.8	95.0	95.8	95.0	94.1	93.0
200	95.4	94.5	96.2	95.4	95.8	95.0	94.5	93.6
250	95.8	95.0	96.2	95.4	95.8	95.0	95.0	94.1
300	95.8	95.0	96.2	95.4	95.8	95.0		
350	95.8	95.0	96.2	95.4	95.8	95.0		
400	95.8	95.0	96.2	95.4				
450	95.8	95.0	96.2	95.4				
500	95.8	95.0	96.2	95.4				

- Todos los motores
 Baldor cumplen con la norma NEMA-Premium
- Obligatorio par venta dentro de USA
- Mayor economía de Energía en aplicaciones de uso continuo

Annex B

NEMA MG1-2014 Table 12-13 FULL-LOAD EFFICIENCIES FOR 60 HZ PREMIUM EFFICIENCY MEDIUM ELECTRIC MOTORS RATED 5000 VOLTS OR LESS (FORM WOUND)

Open Motors

-	<u>2 P</u>	ole	<u>4 P</u>	ole	<u>6 P</u>	ole	<u>8 P</u>	ole
<u>HP</u>	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency
250	94.5	93.6	95.0	94.1	95.0	94.1	93.6	92.4
300	94.5	93.6	95.0	94.1	95.0	94.1		
350	94.5	93.6	95.0	94.1	95.0	94.1		
400	94.5	93.6	95.0	94.1				
450	94.5	93.6	95.0	94.1				
500	94.5	93.6	95.0	94.1				

Enclosed Motors

-	<u>2 P</u>	ole	<u>4 P</u>	<u>ole</u>	<u>6 P</u>	<u>ole</u>	<u>8 P</u>	<u>ole</u>
<u>HP</u>	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency
250	95.0	94.1	95.0	94.1	95.0	94.1	94.1	93.0
300	95.0	94.1	95.0	94.1	95.0	94.1		
350	95.0	94.1	95.0	94.1	95.0	94.1		
400	95.0	94.1	95.0	94.1				
450	95.0	94.1	95.0	94.1				
500	95.0	94.1	95.0	94.1				

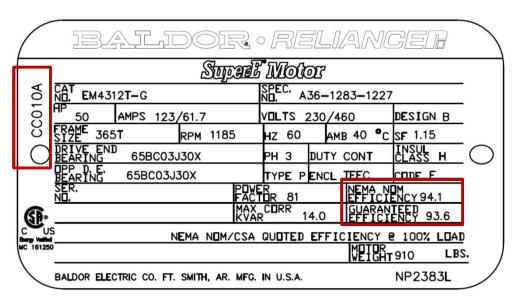
- Todos los motores
 Baldor cumplen con la norma NEMA-Premium
- Obligatorio para venta dentro de USA
- Mayor economía de Energía en aplicaciones de uso continuo

Annex D

NEMA MG1-2014 Table 20-C FULL-LOAD EFFICIENCIES FOR 60 HZ PREMIUM EFFICIENCY LARGE ELECTRIC MOTORS RATED 5000 VOLTS OR LESS (FORM WOUND)

Open Motors

	2 Pole		2 Pole 4 Pole		6 P	ole	8 Pole	
HP	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency
300		77372	· · · · · · · · · · · · · · · · · · ·	: : 2006	(ATMAN	93.6	92.4
350	4444	1111	222	- <u>3222</u>		1.22	93.6	92.4
400					95.0	94.1	93.6	92.4
450	0505 a	100000	-	877.87	95.0	94.1	93.6	92.4
500	222			200	95.0	94.1	93.6	92.4
600	95.0	94.1	95.4	94.5	95.0	94.1	94.1	93.0
700	95.0	94.1	95.4	94.5	95.0	94.1	94.1	93.0
800	95.0	94.1	95.4	94.5	95.0	94.1	94.1	93.0
900	95.0	94.1	95.4	94.5	95.0	94.1	94.1	93.0
1000	95.0	94.1	95.4	94.5	95.0	94.1	94.1	93.0
1250	95.4	94.5	95.8	95.0	95.0	94.1	94.5	93.6
1500	95.4	94.5	95.8	95.0	95.0	94.1	94.5	93.6
1750	95.8	95.0	95.8	95.0	95.4	94.5	94.5	93.6
2000	95.8	95.0	95.8	95.0	95.4	94.5	94.5	93.6
2250	95.8	95.0	96.2	95.4	95.4	94.5		
2500	95.8	95.0	96.2	95.4	95.8	95.0	224	



- Todos los motores
 Baldor cumplen con la norma NEMA-Premium
- Obligatorio para venta dentro de USA
- Mayor economía de Energía en aplicaciones de uso continuo

Fuente: NEMA MG1-2014

Eficiencia Energética en Motores Marcado en placas y documentación motor BALDOR -

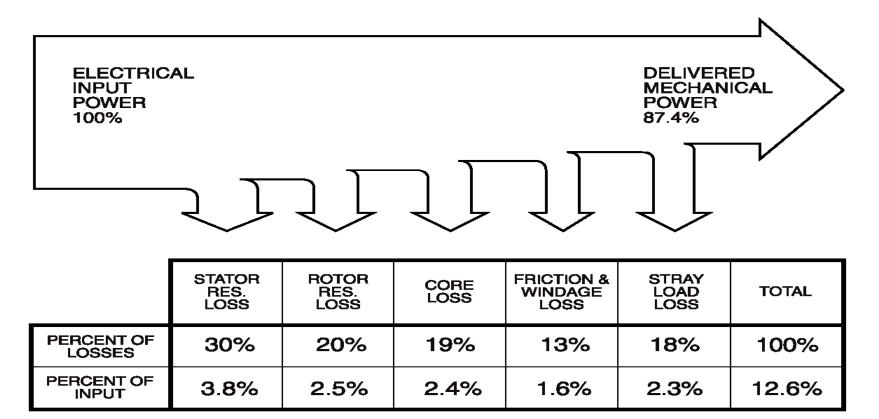
USA

- Es obligatorio publicar en placa la eficiencia nominal en placa para garantizar el cumplimiento de la norma EISA 2007.
- Es obligatorio publicar en placa el certificado de cumplimiento ante el Departamento de Energía de los Estados Unidos (DOE)

¿Qué es la eficiencia de un motor eléctrico?

- Motor de 10Hp operando a plena carga
- Potencia de entrada medida = 8,025 Watts
- Potencia de salida = 10Hp x746 = 7460 Watts
- Eficiencia = Potencia de salida / Potencia de entrada
- Eficiencia = 7460 / 8025
- Eficiencia = .930 o 93.0%

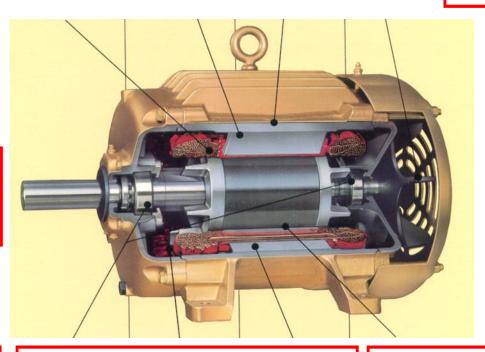
"La eficiencia del motor eléctrico, es la potencia mecánica utilizable de salida dividida entre la potencia eléctrica de entrada".


En otras palabras:

 La eficiencia significa qué tan bien puede un motor convertir la energía eléctrica de entrada en trabajo mecánico provechoso en su eje de salida.

Análisis de Pérdidas en un Motor Eléctrico

Motor de 15HP, 4 polos, trifásico...


¿Cómo se construye un motor de Eficiencia Premium?

Mayor cantidad de material activo (cobre y láminas de acero)

Mejor grado de Laminas De Acero (C4,C5,C6) vs. C3

Ventilador aerodinámico de polipropileno – más pequeño

Simetría y balance Perfectos

Métodos y tolerancias más estrictos

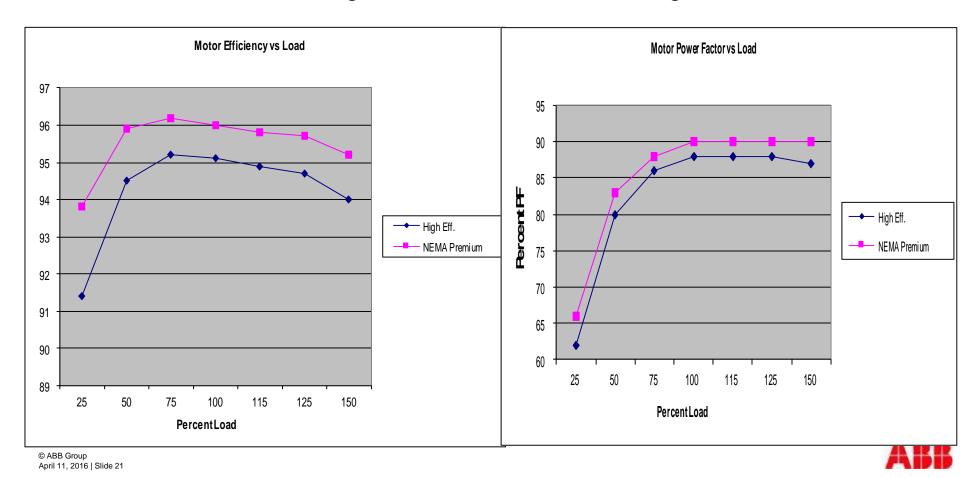
Distancia mínima del entre-hierro

Rodamientos Anti-fricción Sistema de aislamiento resistente a los picos de tensión de inversores, conforme a NEMA MG 1 Parte 31.4.4.2

Rotor balanceado dinámicamente a la mitad de los limites de vibración permitidos por NEMA

Métodos de Medición de Eficiencia

Norma	Método de Medición de Eficiencia	Notas
NEMA	IEEE112, Método B-Dinamómetro CSA C390-98* *Canadian Standard Association	Se miden Todas las pérdidas
IEC	En el 2007 IEC publico el IEC 60034-2-1:2014	Similar a la IEEE112B
	MEPS 2009 - IEC 60034-30:2014	Se usa para para eficiencias IE1, IE2, IE3, IE4

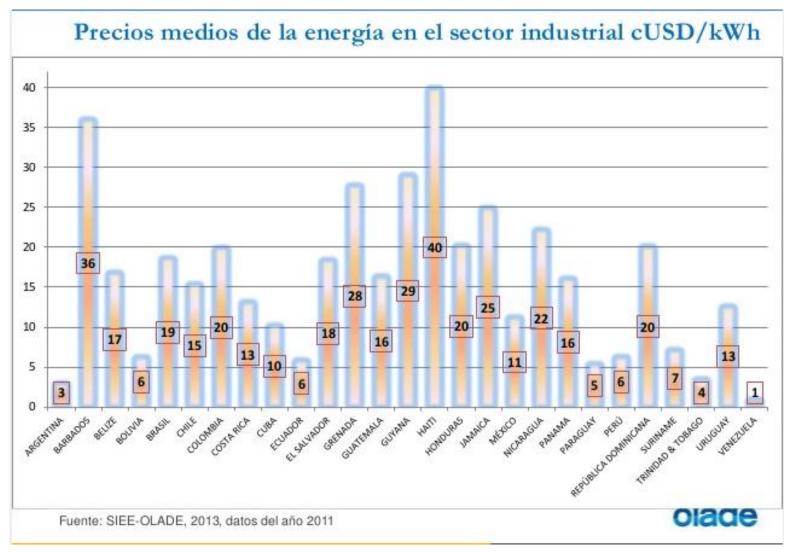


NOTA: Los métodos más precisos de medición de eficiencia de motores eléctricos en el mundo son los sugeridos por IEEE112, Método B y el IEC 60034-2-1:2014 realizados por dinamómetro, usados por ABB/Baldor/Reliance.

¿Cómo varia la eficiencia con respecto al % de carga?

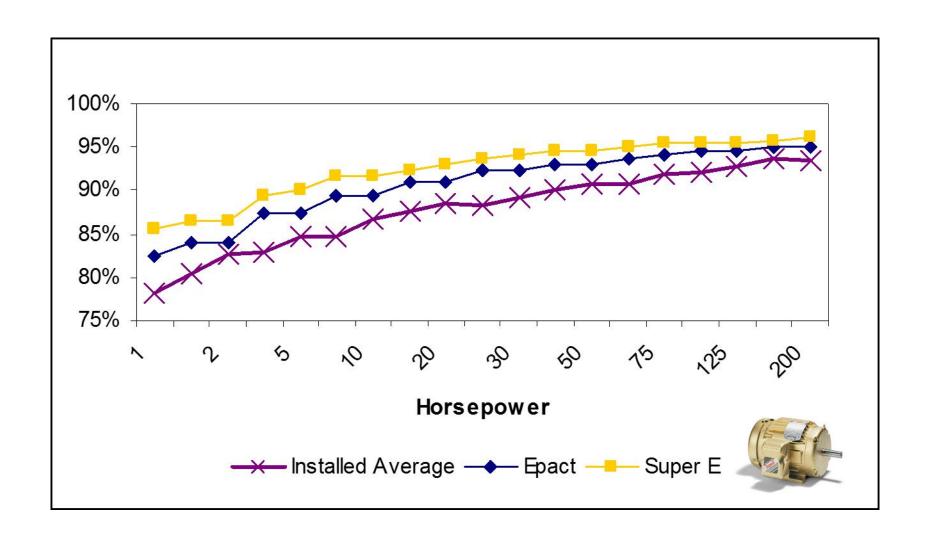
- Seleccione el tamaño correcto para la aplicación
- Motores sobredimensionados tienen un factor de potencia y eficiencia más baja
- La eficiencia más alta se logra entre el 75 85% de la carga

Cálculos de Ahorro Energético con Motores de Eficiencia NEMA Premium®



Factores que determinan la cuenta de electricidad Sector Industrial

- 1. Consumo de kilowatt-horas
- 2. Ajustes por costo de combustible
- 3. Demanda de kilowatts
- 4. Multas por factor de potencia (si las hay)



Precio del kWh Industrial en América Latina y el Caribe

Comparación de Eficiencia en Motores

Comparación de Eficiencia de Motores

HP	Promedio de Eficiencia Motores Instalados	Standard-E Eficiencia EPAct	Super –E Eficiencia NEMA Premium
1	77.5	82.5	85.5
10	82.2	89.5	91.7
50	89.0	93.0	94.5
100	89.3	94.5	95.4

Cálculo de Costo de Operación Motor NEMA-Premium vs Motor Rebobinado

Caso 1: Motor de 100Hp, 1800RPM, 460V, Eficiencia NEMA-Premium a plena carga 95.4 vs Eficiencia promedio de motor instalado 89.3, ambos operando 6000 horas por año al 85% de carga, a un costo por kWh de \$0.15USD.

Motor NEMA-Premium

Kilowatt-Horas = 85Hp x .746 x 6000 horas de operación anual / 0.954

= 398,805 kWh anual

Costo Aproximado de Operación = 398,805 kWh anual x US\$0.15

= US\$59,821 anual

Motor Instalado

Kilowatt-Horas = 85Hp x .746 x 6000 horas de operación anual / 0.893

= 426,047kWh anual

Costo Aproximado de Operación = 426,047 kWh anual x US\$0.15

= US\$63,907 anual

Ahorro de Operación Anual = Motor instalado rebobinado US\$63,907 - Motor NP US\$59,821

= US\$4,086 ahorro anual

Retorno de Inversión = [Precio de compra del motor NP \$7,770/\$4,086]*12 = 23 Meses

Eficiencia Energética en Motores - Caso 1

NEMA Premium (IE3) vs Instalado rebobinado: 100Hp, 4P, 460V Costo Total de operar el motor en 20 años (240 meses)

Costo Total de Operar el motor Ef Premium de 100 HP en 20 años: \$1,211,490USD

Retorno de Inversión del mayor costo inicial del Motor Premium se da en 23 meses.

Los siguientes 217 meses para completar la vida útil genera un ahorro total de \$73,889 USD asumiendo 0.15 centavos de USD

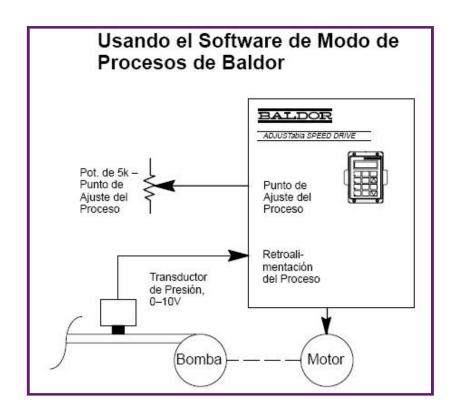
TCO MOTORES ELECT	RICOS	
CONFIABILIDAD	Motor Antiguo	Motor Nuevo
GASTO DE MANTENIEMIENTO		
Numero de rebobinadas por año	1	0
Rebobinado (\$)	2700	0
Cambio de Rodamiento (\$)	200	0
Cambio de Grasa (\$)	50	0
Horas Hombre total del trabajo (Hr.)	72	0
Costo H/H (\$)	6.82	0
COSTO MANTENIMIENTO (\$)	3,440.91	0
COSTO POR PARADA DE PLANTA NO PLANIFICADA		
Cantidad de Producc/H (unidades)	26000	26000
Costo por unidad	0.2	0.2
Números de Paro de planta por año	1	0
Tiempo de paro de planta(Hr.)	2	0
COSTO POR PARADA DE PLANTA POR HORA (\$)	10,400.00	0
AHORRO EN ENERGIA		
Costo por KW/H(\$)	0.15	0.15
Numero de Rebobinadas	1	0
Años de antigüedad	10	0
Horas de trabajo por dia(Hr.)	6000	6000
Porcentaje de Carga(%)	85	85
Consumo de Operación Anual del Motor (\$)	63,907.05	59,820.75
AHORRO ANUAL DE ENREGIA (\$)	0	4,086.30
DATOS DEL MOTOR		
Potencia (HP)	100	100
Voltaje(V)	460	460
Velocidad(RPM)	1785	1785
Eficiencia Motor Antiguo (%)	89.3	95.4
Frecuencia(Hz)	60	60
Precio Motor NEMA PREMIUM(\$)	0	7,770.00
COSTO ANUAL DE OPERACIÓN MOTOR (\$)	\$ 77,747.96	\$ 59,820.75
COSTO COMPRA MOTOR NUEVO		\$ 7,770.00
AHORRO NETO USANDO MOTOR NEMA PREMIUM		\$ 10,157.21
RETORNO DE LA INVERSION (MESES)		9.18

El cliente tiene:

- 1 Parada no planificada x año
- 1 Rebobinada x año

¿Cuanto ahorran los motores de Eficiencia NEMA Premium® Super-E?

	Ahorro		
	Annual con/	Recuperación	
<u>HP</u>	Super-E	en Meses	
5	\$277	12	
10	\$464	12	
25	\$923	14	
50	\$1,449	16	
100	\$2,454	18	
200	\$4,675	18	


 Tiempo de recuperación del costo de un motor nuevo cuando un motor bueno instalado es cambiado por uno Super-E.

Basados en \$.10/kWh, uso continuo, cambiando motores instalados

Obtenga Mayor Ahorro Usando Variadores de Frecuencia

- Agregue variadores de velocidad ajustable en aplicaciones de bombas y ventiladores
 - Control de procesos incrementa la productividad

Ahorro Potencial Motores Super-E + Variadores Cargas de Torque Variable

Aire acondicionado	20-25%
Compresores	20-25%
Refrigeración Central	25-35%
Sopladores y Ventiladores	30-35%
Bombas	30-50%

Fuente: Wisconsin Center for Demand-Side Research

Ley de Afinidad

Eficiencia Energética con Motores Recomendaciones

- 1. Invertir en tecnologías más eficientes
- 2. Realizar auditorias energéticas en Motores Eléctricos en la Plantas
- 3. Establecer políticas de recambios de motores de baja eficiencia o rebobinados por motores de Alta Eficiencia (IE2) y Premium (IE3).
- 4. Documentar Bonos de Reducción de CO2 y presentarlo a las entidades correspondientes
- 5. Crear Comités de Eficiencia Energética en la Plantas
- 6. Antes de decidir una compra evaluar el Costo Total de Propiedad y Retorno de Inversión considerando costo inicial + costo operacional + mantenimiento del motor + pérdidas de producción por fallas de motor rebobinados.

Power and productivity for a better world™

